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Supplementary Tables 35 

Supplementary Table 1: Population-weighted annual average MDA8 ozone over different 36 

regions.  37 

 Model ozone 

before bias 

adjustment 

(ppbv) 

Model ozone 

after bias 

adjustment 

(ppbv) 

Observation 

(ppbv) 

Relative model 

bias after 

adjustment 

Mainland China 49.9 41.0 39.2 4.6% 

US 43.6 35.7 33.4 6.3% 

Europe 35.4 30.1 34.4 -14.1% 

Canada 37.9 31.6 33.7 -6.0% 

World 46.6 37.9 37.6 0.8% 

 38 
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Supplementary Table 2: Geographical information of 13 background sites for ozone 40 

measurement from TOAR[1]. All data are downloaded from https://join.fz-juelich.de/access/. 41 

Station name Country Latitude/Longitude 
Altitude 

(m) 
Dates 

Lisboa/Gago Coutinho Portugal 38.77°N/9.13°W 105.0 
1971-

2002 

Sibton 
United 

Kingdom 
52.29°N/1.46°E 46.0 

1973-

2012 

Stevenage 
United 

Kingdom 
51.89°N/0.20°W 90.0 

1976-

1994 

Zugspitze Germany 47.42°N/10.98°E 2960.0 
1978-

2010 

Harwell 
United 

Kingdom 
51.571°N/1.33°W 126.0 

1976-

2012 

Hohenperssenberg Germany 47.80°N/11.01°E 985.0 
1971-

2017 

Barrow 
United States of 

America 
71.323°N/156.61°W 11.0 

1973-

2018 

Mauna Loa 
United States of 

America 
19.53°N/155.58°W 3397.0 

1973-

2018 

American Samoa GMD 

Observatory 

American 

Samoa 
14.25°S/170.56°W 42.0 

1976-

2015 

Amundsen-Scott South Pole Antarctica 89.99°S/24.8°E 2841.0 
1975-

2018 

Jeløya Norway 59.43°N/10.6°E 5.0 
1979-

2003 

Whiteface Mountain 

Summit, New York 

United States of 

America 
44.37°N/73.90°E 1483.0 

1975-

2015 

 42 
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Supplementary Figures 44 

 45 

Supplementary Figure 1: Global premature mortality attributable to ozone 46 

exposure in 1981, as well as contributions by individual source regions. (a) the 47 

calculation based on GEOS-Chem simulations driven by meteorological conditions in 48 

2014. (b) similar to (a) but using meteorological conditions in 1981. The ozone 49 

exposure-response model is from Turner et al.[2], with the LCC at 26.7 ppbv. 50 
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 52 

Supplementary Figure 2: Relationship between regional affluence level and its 53 

mortality impact caused by transboundary ozone. Similar to Fig. 4a, but using LCC 54 

= 0 ppbv. 55 

 56 
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 58 

Supplementary Figure 3: Historical changes in anthropogenic ozone related 59 

premature deaths. The baseline mortality rates before 1990 are fixed at the year of 60 

1990 (black line), extrapolated based on the corresponding trends over 1990-2014 61 

(green line) and over 1990-2000 (pink line), respectively.  62 

 63 
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 65 

Supplementary Figure 4: Historical changes in anthropogenic emissions of NOx 66 

and NMVOC. The emission data are taken from CEDS[3, 4] and MEIC[5-7]. 67 

  68 



8 

 

 69 

Supplementary Figure 5: Evaluation of annual average MDA8 ozone. The panels 70 

show simulated (colored circles) and observed (colored squares) ozone and their 71 

differences over mainland China, the United States, Europe and Canada in 2014. The 72 

number in each panel shows the mean bias (MB). 73 
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 75 

Supplementary Figure 6: Ratio of observed to modeled annual mean MDA8 ozone 76 

over mainland China, the United States and Europe. Each circle denotes a grid cell 77 

with available observations. Each black dot denotes the average of all circles in each 78 

population density bin separated by the yellow vertical line. 79 
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 81 

Supplementary Figure 7: Evaluation of modeled historical ozone concentrations. 82 

Each scatter plot compares the observed and modeled decadal MDA8 ozone 83 

concentrations at individual background sites. 84 
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 86 

Supplementary Figure 8: Comparison between our results and previous studies. 87 

The mortality here is caused by both anthropogenic and natural ozone. Our results in 88 

2010 and 2014 are consistent with the results in 2010 from Shindell et al.[8]. The results 89 

without bias adjustment and with bias adjustment following Shindell et al. [8] are all 90 

consistent with Shindell et al.[8]. Our estimate using Jerrett et al.[9] instead of Turner 91 

et al.[2] for exposure-response calculation (as another sensitivity test) is comparable to 92 

Malley et al.[10], both without ozone bias adjustment. 93 

  94 



12 

 

 95 

Supplementary Figure 9: Linking regional affluence level to its per-million-people 96 

contribution to its ozone precursors’ emissions. The y-axis shows the per-million-97 

people contribution to NOx (a) and NMVOC (b) emissions of four groups. The 98 

anthropogenic emission datasets include CEDS[3]+MEIC[5-7, 11] (solid lines), 99 

EDGAR v50[12] (dash lines) and PKU inventory[13-17] (dot lines). The x-axis shows 100 

per capita GDP of each source region. 101 
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 103 

Supplementary Figure 10: Historical anthropogenic ozone related mortality and 104 

contributions from three driving factors. Similar to Figure 1 but for all simulation 105 

years. The y-axis shows the premature deaths attributable to total ozone (a) and 106 

transboundary ozone (b) caused by anthropogenic emissions in four income groups.  107 

The changes in baseline mortality rates before 1990 is not considered here, due to 108 

limitation in data availability.  109 
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 111 

Supplementary Figure 11: Bi-directional transboundary ozone related health 112 

responsibility. Similar to Figure 3 but for all simulation years. Each cell in the grid 113 

shows the premature deaths in a receptor region due to anthropogenic emissions per 114 

million people in a source region.  115 
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 117 

Supplementary Figure 12: Relationship between regional affluence level and its 118 

ozone impact. The y-axis shows the ratio of deaths to total population (a) and 119 

population-weighted MDA8 ozone (b) within its territory (circles with black coats) and 120 

outside its territory (circles without coats) caused by per million residents in each source 121 

region. 122 
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